Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Receptor engagement by viral interleukin-6 encoded by Kaposi sarcoma-associated herpesvirus.

Blood 2001 November 16
Receptor usage by viral interleukin-6 (vIL-6), a virokine encoded by Kaposi sarcoma- associated herpesvirus, is an issue of controversy. Recently, the crystal structure of vIL-6 identified vIL-6 sites II and III as directly binding to glycoprotein (gp)130, the common signal transducer for the IL-6 family of cytokines. Site I of vIL-6, however, comprising the outward helical face of vIL-6, where human IL-6 (hIL-6) would interact with the specific alpha-chain IL-6 receptor (IL-6R), is accessible and not occupied by gp130. This study examined whether this unused vIL-6 surface is available for IL-6R binding. By enzyme-linked immunosorbent assay, vIL-6 bound to soluble gp130 (sgp130) but not to soluble IL-6R (sIL-6R). Using plasmon surface resonance, vIL-6 bound to sgp130 with a dissociation constant of 2.5 microM, corresponding to 1000-fold lower affinity than that of hIL-6/sIL-6R complex for gp130. sIL-6R neither bound to vIL-6 nor affected vIL-6 binding to gp130. In bioassays, vIL-6 activity was neutralized by 4 monoclonal antibodies (mAbs) recognizing a domain within vIL-6 site I, mapped to the C-terminal part of the AB-loop and the beginning of helix B. The homologous region in hIL-6 participates in site I binding to IL-6R. In addition, binding of vIL-6 to sgp130 was interfered with specifically by the 4 neutralizing anti-vIL-6 mAbs. Based on the vIL-6 crystal structure, the vIL-6 neutralizing mAbs map outside the binding interface to gp130, suggesting that they either produce allosteric changes or block necessary conformational changes in vIL-6 preceding its binding to gp130. These results document that vIL-6 does not bind IL-6R and suggest that conformational change may be critical to vIL-6 function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app