JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Enhancement of survival by LPA via Erk1/Erk2 and PI 3-kinase/Akt pathways in a murine hepatocyte cell line.

First published September 5, 2001; 10.1152/ajpcell.00077.2001.-Protective mechanisms for lysophosphatidic acid (LPA) against cell death caused by Clostridium difficile toxin, or tumor necrosis factor-alpha (TNF-alpha) plus D-galactosamine, were investigated in a murine hepatocyte cell line AML12 expressing Edg2 LPA receptor. In these models of hepatocellular injury, LPA prevented hepatocyte damage, suppressed apoptosis, and enhanced cell survival in a dose-dependent fashion. The protective effects of LPA were abolished by wortmannin and LY-294002, specific inhibitors of phosphatidylinositol 3-phosphate kinase (PI 3-kinase), and by PD-98059 and U-0126, inhibitors of MEK1/MEK2. In nontreated hepatocytes, LPA elicited a gradual and sustained increase in phosphorylation of Erk1/Erk2 over 180 min of stimulation and downstream phosphorylation of p90RSK and transcription factor Elk-1. In C. difficile toxin-treated cells, LPA-induced phosphorylation of Erk1/Erk2 was rapid but transient, while p90RSK and Elk-1 phosphorylation did not change significantly. LPA stimulated phosphorylation of Akt in a time-dependent manner in both intact and toxin-treated AML12 hepatocytes. Wortmannin and LY-294002 abolished phosphorylation of Akt, further supporting activation of PI 3-kinase/Akt as a signaling pathway, which mediates hepatocyte protection by LPA. Taken together, these results demonstrate that LPA prevents cell apoptosis induced by C. difficile toxin and TNF-alpha/D-galactosamine in the AML12 murine hepatocyte cell line. Cell protection by LPA involves activation of the mitogen-activated protein kinase Erk1/Erk2 cascade and PI 3-kinase-dependent phosphorylation of Akt.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app