Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Pharmacological MRI mapping of age-associated changes in basal ganglia circuitry of awake rhesus monkeys.

NeuroImage 2001 November
While the pathophysiological changes induced by the loss of dopamine innervation in the basal ganglia by Parkinson's disease (PD) are well studied, little is known about functional changes in the neural circuitry of this area during normal aging. Here we report the first survey of age-associated changes in the basal ganglia of behaviorally characterized, awake rhesus monkeys, using pharmacological MRI to map responses to dopaminergic stimulation. Apomorphine, a mixed D(1)/D(2) dopamine receptor agonist, evoked little change in the substantia nigra (SN) of aged animals while significantly reducing activation in young adult monkeys. Compared to young animals, both apomorphine and d-amphetamine (which increases synaptic dopamine levels) significantly increased activation of the aged rhesus globus pallidus externa (GPe). In addition, the aged animals showed decreased activity in the putamen in response to d-amphetamine administration. Although the responses in the SN and putamen of the aged monkeys differed from those in animal models of PD, the apomorphine-evoked activation of their GPe corresponded with apomorphine-induced increases in neuronal activity seen in Parkinson's patients and animal models. Given the major role of the GPe in regulating motor behavior, the altered responses in the aged GPe may contribute significantly to the motor slowing and movement dysfunctions characterizing advanced age.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app