JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels.

1. The effects of the endocannabinoid, anandamide, and its metabolically stable analogue, methanandamide, on induced tone were examined in sheep coronary artery rings in vitro. 2. In endothelium-intact rings precontracted to the thromboxane A(2) mimetic, U46619, anandamide (0.01 - 30 microM) induced slowly developing concentration-dependent relaxations (pEC(50) [negative log of EC(50)]=6.1+/-0.1; R(max) [maximum response]=81+/-4%). Endothelium denudation caused a 10 fold rightward shift of the anandamide concentration-relaxation curve without modifying R(max). Methanandamide was without effect on U46619-induced tone. 3. The anandamide-induced relaxation was unaffected by the cannabinoid receptor antagonist, SR 141716A (3 microM), the vanilloid receptor antagonist, capsazepine (3 and 10 microM) or the nitric oxide synthase inhibitor, L-NAME (100 microM). 4. The cyclo-oxygenase inhibitor, indomethacin (3 and 10 microM) and the anandamide amidohydrolase inhibitor, PMSF (70 and 200 microM), markedly attenuated the anandamide response. The anandamide transport inhibitor, AM 404 (10 and 30 microM), shifted the anandamide concentration-response curve to the right. 5. Precontraction of endothelium-intact rings with 25 mM KCl attenuated the anandamide-induced relaxations (R(max)=7+/-7%), as did K(+) channel blockade with tetraethylammonium (TEA; 3 microM) or iberiotoxin (100 nM). Blockade of small conductance, Ca(2+)-activated K(+) channels, delayed rectifier K(+) channels, K(ATP) channels or inward rectifier K(+) channels was without effect. 6. These data suggest that the relaxant effects of anandamide in sheep coronary arteries are mediated in part via the endothelium and result from the cellular uptake and conversion of anandamide to a vasodilatory prostanoid. This, in turn, causes vasorelaxation, in part, by opening potassium channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app