COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Frictional resistances of metal-lined ceramic brackets versus conventional stainless steel brackets and development of 3-D friction maps.

Angle Orthodontist 2001 October
The frictional resistances of 2 metal-lined ceramic brackets (Luxi and Clarity) were compared with 2 conventional stainless steel brackets (Mini-Taurus and Mini-Twin) in vitro. In method 1, we varied the second-order angulation from 0 degrees to 12 degrees while maintaining the normal or ligature force constant at 0.3 kg; in method 2, we varied the ligature force from 0.1 kg to 0.9 kg while maintaining the angulation at theta = 0 degrees or theta = 11 degrees. The hardware simulated a 3-bracket system in which the interbracket distances were always 18 mm. All couples were evaluated at 34 degrees C using the same size stainless steel archwire (19 x 26 mil) and ligature wire (10 mil). In the passive region, the static and kinetic frictional forces and coefficients of friction were key parameters; in the active region, the static and kinetic binding forces and coefficients of binding were critical parameters. From outcomes of methods 1 and 2, the 4 aforementioned parameters, and a knowledge of the critical contact angle for binding, 3-dimensional friction maps were constructed in the dry and wet states from which the frictional resistances could be determined at any ligature force or second-order angulation. Those 3-dimensional maps show that metal-lined ceramic brackets can function comparably to conventional stainless steel brackets and that 18-kt gold inserts appear superior to stainless steel inserts. As the morphologies of metal inserts are improved, these metal-lined ceramic brackets will provide not only good esthetics among ceramic brackets but also minimal friction among conventionally ligated brackets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app