Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bond energies and attachments sites of sodium and potassium cations to DNA and RNA nucleic acid bases in the gas phase.

Gas-phase metal affinities of DNA and RNA bases for the Na(+) and K(+) ions were determined at density functional level employing the hybrid B3LYP exchange correlation potential in connection with the 6-311+G(2df,2p) basis set. All the molecular complexes, obtained by the interaction between several low-lying tautomers of nucleic acid bases and the alkali ions on the different binding sites, were considered. Structural features of the sodium and potassium complexes were found to be similar except in some uracil and thymine compounds in which the tendency of potassium ion toward monocoordination appeared evident. B3LYP bond energies for both metal ions were in agreement with the available experimental results in the cases of uracil and thymine for which the most stable complex was obtained starting from the most stable tautomer of the free nucleic acid base. For adenine, although the interaction of the ions with the most stable free tautomer generated the least stable molecular complex, the best agreement with experiment was found in just this case. For the remaining cytosine and guanine bases, our calculations indicated that the metal ion affinity value closest to experiment should be determined taking into account the role played by the different tautomers of the free bases with similar energy and all the possible complexes obtained by them.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app