Control of electron transfer in supramolecular systems
K Kilså, A N Macpherson, T Gillbro, J Mårtensson, B Albinsson
Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2001 September 14, 57 (11): 2213-27
11603839
The fluorescence quantum yield of zinc porphyrin (ZnP) covalently linked to 9,10-bis(phenylethynyl)anthracene (AB) is strongly dependent upon the solvent properties. The bichromophoric system ZnP-AB exhibits 'normal' zinc porphyrin fluorescence in solvents that cannot coordinate to the central zinc atom. In contrast, if a Lewis base, such as pyridine, is added to a sufficiently polar solvent, the fluorescence is significantly quenched. Picosecond transient absorption measurements, in conjunction with fluorescence quenching and cyclic voltammetric measurements, suggest that the quenching mechanism is intramolecular electron transfer from ZnP to AB. The charge separated state. ZnP*+-AB*-, has a lifetime of not more than 220 ps before recombining. If a secondary electron acceptor, iron(III) porphyrin (FeP), is covalently connected to the AB unit, a second electron transfer from AB*- to FeP occurs and the charge separated state, ZnP*+-AB-FeP*-, has a lifetime of at least 5 ns. This demonstrates that electron transfer might be sensitively tuned (switched on) by specific solvent effects.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.