JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spatially precise DNA bending is an essential activity of the sox2 transcription factor.

Sox proteins, a subclass of high mobility group box proteins, govern cell fate decisions by acting both as classical transcription factors and architectural components of chromatin. We aimed to demonstrate that the DNA bending activity of Sox proteins is essential to regulate gene expression. We focused on mouse Sox2, which participates in the transactivation of the Fgf4 (fibroblast growth factor 4) gene in the inner cell mass of the blastocyst. We generated six substitutions in the high mobility group box of Sox2. One mutant showed a reduced DNA bending activity on the Fgf4 enhancer (46 degrees instead of 80 degrees), which resulted in more powerful transactivation compared with the wild type protein. We then selected two single-base mutations in the Fgf4 enhancer that make the DNA less bendable by the Sox2 protein. Again, a different DNA bend (0 degrees and 42 degrees instead of 80 degrees) resulted in a different activation of transcription, but in this case reduced bending corresponded to decreased transcription. We found that the opposite effect on transcription of similar DNA bending angles is due to a 20 degrees difference in the relative orientation of the DNA bends, proving that a correct three-dimensional geometry of enhanceosome complexes is necessary to promote transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app