JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Minimal ischaemic neuronal damage and HSP70 expression in MF1 strain mice following bilateral common carotid artery occlusion.

Brain Research 2001 September 29
Investigation into the influence of specific genes and gene products upon the pathophysiology of cerebral ischaemia has been greatly enhanced by the use of genetically modified mice. A simple model of global cerebral ischaemia in mouse is bilateral common carotid artery occlusion (BCCAo) and the neuropathological impact of BCCAo has been investigated in several mouse strains. Bilateral carotid occlusion produces extensive neuronal damage in C57Bl/6J strain mice and this damage is linked to posterior communicating artery (PcomA) hypoplasticity in the circle of Willis. In the present study, we investigated the effect of BCCAo in MF1 strain mice and compared them with C57Bl/6J mice. The neuropathological consequences of BCCAo were assessed using standard histochemical staining and heat shock protein 70 (HSP70) immunohistochemical staining (to demarcate cells that had been ischaemically stressed). The effect of BCCAo on mean arterial blood pressure (MABP) was also measured. The plasticity of the circle of Willis was recorded using carbon black perfusion. MF1 mice displayed significantly less ischaemic neuronal damage and HSP70 immunoreactivity compared to C57Bl/6J mice following 10-20 min BCCAo. Moreover, ischaemic neuronal damage and HSP70 immunoreactivity in MF1 mice subjected to extended BCCAo (25-45 min) was never as extensive or widespread as that observed in C57Bl/6J mice after 20 min BCCAo. MABP in MF1 mice (102+/-5 mmHg) was significantly higher than in C57Bl/6J mice (87+/-5) during 20 min BCCAo. MABP in MF1 mice during 20 and 40 min (103+/-12 mmHg) BCCAo remained above pre-occlusion values for the entire occlusion period. MF1 mice had significantly greater circle of Willis plasticity (more PcomAs) than C57Bl/6J mice did. These data indicate that MF1 mice are less susceptible to BCCAo than C57Bl/6J mice and that this could be due to maintained increases in MABP during BCCAo and the lower prevalence of abnormalities of the circle of Willis in MF1 mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app