JOURNAL ARTICLE
REVIEW

Vascular calcification and inorganic phosphate

C M Giachelli, S Jono, A Shioi, Y Nishizawa, K Mori, H Morii
American Journal of Kidney Diseases 2001, 38 (4 Suppl 1): S34-7
11576919
Vascular calcification is highly correlated with elevated serum phosphate levels in uremic patients. To shed light on this process, we examined the ability of extracellular inorganic phosphate (Pi) levels to regulate human aortic smooth muscle cell (HSMC) culture mineralization in vitro. When cultured in media containing normal physiological levels of Pi (1.4 mmol/L Pi), HSMC grew in monolayers and did not mineralize. In contrast, HSMC cultured in media containing Pi levels comparable to those seen in hyperphosphatemic individuals (>1.4 mmol/L), showed dose-dependent increases in cell culture calcium deposition. Mechanistic studies showed that elevated Pi treatment of HSMC also enhanced the expression of the osteogenic markers, osteocalcin and Cbfa-1. The effects of elevated Pi on HSMC were mediated by a sodium-dependent phosphate cotransporter (NPC), as indicated by the ability of the specific NPC inhibitor, phosphonoformic acid (PFA), to dose-dependently inhibit Pi-induced calcium deposition as well as osteocalcin and Cbfa-1 gene expression. Using polymerase chain reaction and Northern blot analyses, the NPC in HSMC was identified as Pit-1 (Glvr-1), a member of the type III NPCs. Interestingly, platelet-derived growth factor-BB (PDGF-BB), a potent atherogenic stimulus, increased the maximum velocity (Vmax) but not the affinity (Km) of phosphate uptake, enhanced the expression of Pit-1 mRNA, and induced HSMC culture calcification in a time- and dose-dependent manner. Importantly, in the presence of PDGF, HSMC culture calcification occurred under normophosphatemic conditions. These data suggest that elevated Pi may directly stimulate HSMC to undergo phenotypic changes that predispose to calcification and may help explain both the phenomena of human metastatic calcification under hyperphosphatemic conditions as well as increased calcification in PDGF-rich atherosclerotic lesions.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
11576919
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"