Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Review
Add like
Add dislike
Add to saved papers

Vascular calcification and inorganic phosphate.

Vascular calcification is highly correlated with elevated serum phosphate levels in uremic patients. To shed light on this process, we examined the ability of extracellular inorganic phosphate (Pi) levels to regulate human aortic smooth muscle cell (HSMC) culture mineralization in vitro. When cultured in media containing normal physiological levels of Pi (1.4 mmol/L Pi), HSMC grew in monolayers and did not mineralize. In contrast, HSMC cultured in media containing Pi levels comparable to those seen in hyperphosphatemic individuals (>1.4 mmol/L), showed dose-dependent increases in cell culture calcium deposition. Mechanistic studies showed that elevated Pi treatment of HSMC also enhanced the expression of the osteogenic markers, osteocalcin and Cbfa-1. The effects of elevated Pi on HSMC were mediated by a sodium-dependent phosphate cotransporter (NPC), as indicated by the ability of the specific NPC inhibitor, phosphonoformic acid (PFA), to dose-dependently inhibit Pi-induced calcium deposition as well as osteocalcin and Cbfa-1 gene expression. Using polymerase chain reaction and Northern blot analyses, the NPC in HSMC was identified as Pit-1 (Glvr-1), a member of the type III NPCs. Interestingly, platelet-derived growth factor-BB (PDGF-BB), a potent atherogenic stimulus, increased the maximum velocity (Vmax) but not the affinity (Km) of phosphate uptake, enhanced the expression of Pit-1 mRNA, and induced HSMC culture calcification in a time- and dose-dependent manner. Importantly, in the presence of PDGF, HSMC culture calcification occurred under normophosphatemic conditions. These data suggest that elevated Pi may directly stimulate HSMC to undergo phenotypic changes that predispose to calcification and may help explain both the phenomena of human metastatic calcification under hyperphosphatemic conditions as well as increased calcification in PDGF-rich atherosclerotic lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app