Add like
Add dislike
Add to saved papers

Study of the correlation between administered activity and radiation committed dose to the thyroid in 131I therapy of Graves' disease.

Substantial reduction in the thyroid volume (up to 70-80%) after 131I therapy of Graves' disease has been demonstrated and reported in the literature. Recently a mathematical model of thyroid mass reduction during the first month after therapy has been developed and a new algorithm for the radiation committed dose calculation has been proposed. Reduction of the thyroid mass and the radiation committed dose to the gland depend on a parameter k, defined for each subject. The calculation of k allows the prediction of the activity to administer, depending on the radiation committed dose chosen by the physician. In this paper a method for calculating k is proposed. The calculated values of k are compared to values derived from measurements of the changes in thyroid mass in twenty-six patients treated by 131I for Graves' disease. The radiation committed dose to the thyroid can be predicted within 21%, and the radioiodine activity to administer to the patient can be predicted within 22% using the calculated values of k. The thyroid volume reduction during the first month after therapy administration can be also predicted with good accuracy using the calculated values of k. The radiation committed dose and the radioiodine activity to administer were calculated using a new, very simple algorithm. A comparison between the values calculated by this new algorithm and the old, classical Marinelli-Quimby algorithm shows that the new method is more accurate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app