Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Structural features of the Abeta amyloid fibril elucidated by limited proteolysis.

Biochemistry 2001 October 3
Although the gross morphology of amyloid fibrils is fairly well understood, very little is known about how the constituent polypeptides fold within the amyloid folding motif. In the experiments reported here, we used trypsin and chymotrypsin to conduct limited proteolysis studies on synthetic amyloid fibrils composed of the Alzheimer's disease peptide Abeta(1-40). In both reactions, the extreme N-terminal proteolytic fragment is released from fibrils as rapidly as it is from the Abeta monomer, while other proteolytic fragments are generated much more slowly. Furthermore, aggregated material isolated by centrifugation of intermediate digestion time points from both proteases contains, in addition to full-length material, peptides that possess mature C-termini but truncated N-termini. These data strongly suggest that the N-terminal region of Abeta is not involved in the beta-sheet network of the amyloid fibril, while the C-terminus is essentially completely engaged in protective-presumably beta-sheet-structure. In both digests, release of the extreme N-terminal fragments of Abeta(1-40) reaches plateau values corresponding to about 80% of the total available Abeta. This suggests that there are two classes of peptides in the fibril: while the majority of Abeta molecules have an exposed N-terminus, about 20% of the peptides have an N-terminus that is protected from proteolysis within the fibril structure. The most likely cause of this heterogeneity is the lateral association of protofilaments into the fibril structure, which would be expected to generate a unique environment for those Abeta N-termini located at protofilament packing interfaces and/or in the interior core region between the packed protofilaments. This suggests that the N-terminal region of Abeta, while not directly involved in the beta-sheet network of the fibril, may contribute to fibril stability by participating in protofilament packing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app