Add like
Add dislike
Add to saved papers

The senescence of oat leaf segments is promoted under simulated microgravity condition on a three-dimensional clinostat.

Uchū Seibutsu Kagaku 1995 December
Plants have evolved on the earth, indicating the morphology, growth and development, and life cycle of plants are highly influenced by gravity as well as other environmental stimuli. Indeed, simulated microgravity on a clinostat or hypergravity on a centrifuge has recently been reported to change the growth and development of plants (Hoson et al. 1992, 1993, 1995, Rasmussen et al. 1994, Kasahara et al. 1995). Senescence is a final drastic phenomenon in life cycle of plants, which is characterized by the loss of total chlorophyll and protein, and/or the formation of the abscission (Osborne 1973, Thimann 1977, Addicott 1982). Many environmental stimuli as well as the qualitative and quantitative changes of plant hormones have been reported to affect plant senescence. Among those stimuli, light is the most important factor to regulate plant senescence (Leopold 1964). Dark condition promotes leaf senescence due to the decrease in endogenous level of cytokinin and/or the increase in that of abscisic acid or ethylene (Tetley and Thimann 1974, Gepstein and Thimann 1980). However, there are few reports concerning the effect of gravity on leaf senescence. Strenuous effort to learn leaf senescence under microgravity condition has been done using a three-dimensional (3-D) clinostat. In this paper, we report that simulated microgravity condition on a 3-D clinostat promoted the senescence of oat leaf segments in the dark. A possible mechanism of microgravity condition on promoting the senescence is also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app