Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Water uptake and growth of cucumber plants (Cucumis sativus L.) under control of dissolved O2 concentration in hydroponics.

Acta Horticulturae 1996 December
Dissolved O2 concentration ([O2]) in nutrient solution was controlled at 0.01, 0.10 and 0.20 mM with accuracy of +/- 0.005 mM in a newly developed hydroponic system, and the effects of [O2] on water uptake and growth of cucumber plants (Cucumis sativus L.) were analyzed. For evaluating water uptake rate under the control of [O2], water flux at the stem base was measured on-line with +/-5% in accuracy, 1 mg s-1 in resolution and 1 min in time constant by heat flux control (HFC) method. Water uptake rate was drastically increased by lighting to the plant at each [O2], and water uptake per day was depressed in proportion to decrease in [O2]. In the plants grown for 10 days, leaf area, fresh weight and dry weight of leaves decreased at lower [O2], while stem length and number of leaves were scarcely affected. These facts suggest that membrane permeability of root cells reduces at lower [O2] through respiration-dependent processes, and growth is inhibited through leaf turgor loss caused by the depressed water uptake of roots in O2-deficient nutrient solution in hydroponics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app