JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

FES-Cre targets phosphatidylinositol glycan class A (PIGA) inactivation to hematopoietic stem cells in the bone marrow.

A somatic mutation in the X-linked phosphatidylinositol glycan class A (PIGA) gene causes the loss of glycosyl phosphatidylinositol (GPI)-linked proteins on blood cells from patients with paroxysmal nocturnal hemoglobinuria. Because all blood cell lineages may be affected it is thought that the mutation occurs in a hematopoietic stem cell. In transgenic mice, germline transmission of an inactive Piga gene is embryonic lethal. To inactivate the murine Piga gene in early hematopoiesis we therefore chose conditional gene inactivation using the Cre/loxP system. We expressed Cre recombinase under the transcription regulatory sequences of the human c-fes gene. FES-Cre inactivated PIGA in hematopoietic cells of mice carrying a floxed Piga allele (LF mice). PIGA(-) cells were found in all hematopoietic lineages of definitive but not primitive hematopoiesis. Their proportions were low in newborn mice but subsequently increased continuously to produce for the first time mice that have almost exclusively PIGA(-) blood cells. The loss of GPI-linked proteins occurred mainly in c-kit(+)CD34(+)Lin(-) progenitor cells before the CFU-GEMM stage. Using bone marrow reconstitution experiments with purified PIGA(-) cells we demonstrate that LF mice have long-term bone marrow repopulating cells that lack GPI-linked proteins, indicating that recombination of the floxed Piga allele occurs in the hematopoietic stem cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app