JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel sox gene, 226D7, acts downstream of Nodal signaling to specify endoderm precursors in zebrafish.

Vertebrate endoderm development has recently become the focus of intense investigation. We have identified a novel sox gene, 226D7, which is important in zebrafish endoderm development. 226D7 was isolated by an in situ hybridization screening for genes expressed in the yolk syncytial layer (YSL) at the blastula stage. 226D7 is expressed mainly in the YSL at this stage and, during gastrulation, its expression is also detected in the forerunner cells and endodermal precursor cells. The expression of 226D7 is positively regulated by Nodal signaling. The knockdown of 226D7 using morpholino antisense oligonucleotides results in a lack of sox17-expressing endodermal precursor cells during gastrulation, and, consequently, lacks endodermal derivatives such as gut tissue. The effect is strictly restricted to the endodermal lineage, while the mesoderm is normally formed, a phenotype that is nearly identical to that of the casanova mutant (Dev. Biol. 215 (1999) 343). We further demonstrate that overexpression of 226D7 increases the number of sox17-expressing endodermal progenitor cells without upregulating the expression of the Nodal genes, cyclops and squint. Region-specific knockdown and overexpression of 226D7 by injection into the YSL suggest that 226D7 in the YSL is not involved in endoderm formation and 226D7 in the endoderm progenitor cells is important for endoderm development. Taken together, our data demonstrate that 226D7 is a downstream target of Nodal signal and a critical transcriptional regulator of early endoderm formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app