Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Nuclear receptor-mediated repression of human cholesterol 7alpha-hydroxylase gene transcription by bile acids.

Hydrophobic bile acids strongly repressed transcription of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) in the bile acid biosynthetic pathway in the liver. Farnesoid X receptor (FXR) repressed CYP7A1/Luc reporter activity in a transfection assay in human liver-derived HepG2 cells, but not in human embryonic kidney (HEK) 293 cells. FXR-binding activity was required for bile acid repression of CYP7A1 transcription despite the fact that FXR did not bind to the CYP7A1 promoter. FXR-induced liver-specific factors must be required for mediating bile acid repression. Bile acids and FXR repressed endogenous CYP7A1 but stimulated alpha-fetoprotein transcription factor (FTF) and small heterodimer partner (SHP) mRNA expression in HepG2 cells. Feeding of rats with chenodeoxycholic acid repressed CYP7A1, induced FTF, but had no effect on SHP mRNA expression in the liver. FTF strongly repressed CYP7A1 transcription in a dose-dependent manner, and SHP further inhibited CYP7A1 in HepG2 cells, but not in HEK 293 cells. FXR only moderately stimulated SHP transcription, whereas FTF strongly inhibited SHP transcription in HepG2 cells. Results revealed that FTF was a dominant negative factor that was induced by bile acid-activated FXR to inhibit both CYP7A1 and SHP transcription. Differential regulation of FTF and SHP expression by bile acids may explain the wide variation in CYP7A1 expression and the rate of bile acid synthesis and regulation in different species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app