IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Angiotensin-converting enzyme inhibitor preserves p21 and endothelial nitric oxide synthase expression in monocrotaline-induced pulmonary arterial hypertension in rats.

Circulation 2001 August 22
BACKGROUND: Pulmonary arterial hypertension (PAH) is associated with structural changes in the pulmonary vasculature characterized by the proliferation of cellular components of the vessels. ACE inhibitor (ACEI) may have beneficial effects in treating PAH, but its precise mechanism of action in the remodeling process is unclear. p21 is a cyclin-dependent kinase inhibitor that may have a protective role in this process by inhibiting cellular proliferation. Endothelial nitric oxide synthase (eNOS) has also been shown to be protective by its vasodilatory effect. Therefore, we investigated whether expression of p21 and eNOS was modulated by ACEI treatment in a rat model.

METHODS AND RESULTS: Monocrotaline (MCT) was administered to 2 groups of Sprague-Dawley rats fed a high-cholesterol diet, ie, one group received MCT concomitantly with enalapril treatment (MCT(+)/ACEI(+) rats), and the other group did not receive enalapril (MCT(+)/ACEI(-) rats). After 5 weeks, MRI showed right ventricular hypertrophy in MCT(+)/ACEI(-) rats. MCT(+)/ACEI(+) rats showed a preserved right ventricular morphology. Isolated pulmonary perfusion studies showed that ACEI significantly upregulated NO production, as measured by nitrite levels. Addition of N-methyl-D-glucamine dithiocarbamate-Fe solution, an NO-trapping agent, reversed the basal vasodilatory effect of ACEI in the pulmonary vasculature. Immunoblot analysis showed decreased p21 and eNOS expression in the lung in MCT(+)/ACEI(-) rats, whereas their expression was preserved with enalapril treatment.

CONCLUSIONS: ACEI suppresses the development of MCT-induced PAH in rats. The mechanism of action might involve the preservation of p21 and eNOS expression. Both p21 and endothelium-derived NO appear to have protective roles in the development of PAH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app