JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

c-Jun N-terminal kinase-interacting protein 1 inhibits gene expression in response to hypertrophic agonists in neonatal rat ventricular myocytes.

Biochemical Journal 2001 September 2
G(q)-coupled receptor agonists, such as endothelin-1 (ET-1) and phenylephrine (PE), initiate a hypertrophic response in cardiac myocytes that is characterized by increased expression of atrial natriuretic factor (ANF), beta-myosin heavy chain (beta-MHC), skeletal muscle alpha-actin (SkalphaA) and ventricular myosin light chain-2 (vMLC2). ET-1 and PE activate both the extracellular signal-regulated kinases and c-Jun N-terminal kinases (JNKs) in cardiac myocytes, but the extent to which each contributes to the hypertrophic response is uncertain. Here we have used the JNK-binding domain of JNK-interacting protein 1 (JIP-1), a cytosolic scaffold protein that binds to JNK and inhibits its signalling when overexpressed, to assess the contribution of JNK activation to the hypertrophic response. Expression of JIP-1 inhibited the increase in ANF, beta-MHC, SkalphaA and vMLC2 reporter gene expression in response to ET-1 (by 45-86%) and PE (by 56-60%). However, activation of these reporter genes by PMA, which does not activate JNK significantly in myocytes, was much less affected by overexpression of JIP-1. JIP-1 also failed to inhibit reporter gene activation in response to constitutively active Ras or Raf, but attenuated reporter gene activation induced by a constitutively active mutant of mitogen-activated protein kinase kinase kinase 1 (MEKK1), an upstream kinase that preferentially activates JNKs, by 50%. Overexpression of JIP-1 also significantly reduced the increase in cell area in response to PE from 63% to 56%, but had no effect on the increase in cell size in response to ET-1 (38%). These results suggest that activation of the JNK pathway contributes to the transcriptional and morphological responses to G(q) receptor-coupled hypertrophic agonists.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app