JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions.

The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules (MICs) that were identified based on their ability to bind to the human cytomegalovirus (HCMV) glycoprotein UL16. UL16 also binds to a member of another family of MHC class I-like molecules, MICB. The ULBPs and MICs are ligands for NKG2D/DAP10, an activating receptor expressed by natural killer (NK) cells and other immune effector cells, and this interaction can be blocked by UL16. Engagement of NKG2D/DAP10 by ULBPs or MICs expressed on a target cell can overcome an inhibitory signal generated by NK-cell recognition of MHC class I molecules and trigger NK cytotoxicity. ULBPs elicit their effects on NK cells by activating the janus kinase 2, signal transducer and activator of transcription 5, extracellular-signal-regulated kinase mitogen-activated protein kinase and Akt/protein kinase B signal transduction pathways. Although ULBPs alone activate multiple signaling pathways and induce modest cytokine production, ULBPs synergize strongly with interleukin-12 for production of interferon-gamma by NK cells. This finding is consistent with reports in T cells that NKG2D/DAP10 can act as a co-stimulatory receptor in a similar manner as CD28. The possible roles of ULBPs in mediating immune responses to viruses and tumors and the potential mechanisms by which UL16 may allow HCMV to evade immune detection are areas of active investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app