JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dexamethasone suppresses iNOS gene expression by inhibiting NF-kappaB in vascular smooth muscle cells.

Life Sciences 2001 July 21
Bacterial lipopolysaccharide (LPS) and other immunostimulants induce an isoform of nitric oxide synthase (iNOS) gene expression in vascular smooth muscle cells (VSMC). This process is dependent on nuclear factor-kappa B (NF-kappaB) activation and is suppressed by glucocorticoids. The aim of this study was to investigate the molecular mechanisms of inhibition of iNOS expression by the synthetic glucocorticoid, dexamethasone (DEX), in rat VSMC. Treatment of VSMC with LPS plus interferon-gamma (LPS/IFN) caused activation of NF-kappaB and the iNOS promoter. LPS/IFN induced iNOS mRNA and NO synthesis. DEX markedly depressed LPS/IFN-stimulated iNOS mRNA expression and NO production. DEX also suppressed LPS/IFN-stimulated activity of a 1.7-kb iNOS promoter, indicating that the inhibition of iNOS expression by DEX occurs at the level of transcription. NF-kappaB activation by LPS/IFN was repressed by DEX. The inhibition of NF-kappaB by DEX exhibited dose-dependent kinetics, which corresponded to DEX suppression of iNOS promoter activation, iNOS mRNA expression, and NO production. However, activation of activator protein-1 (AP-1), which is also contained in the iNOS promoter, was not enhanced by LPS/IFN or inhibited by DEX. Thus, glucocorticoids appear to block iNOS expression, at least in part, through inhibition of NF-kappaB activation, which results in decreased NO production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app