Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Effect of alpha-fluorination of valproic acid on valproyl-S-acyl-CoA formation in vivo in rats.

Studies designed to compare valproic acid (VPA) with its alpha-fluorinated derivative (F-VPA) for their abilities to form acyl-CoA thioester derivatives in vivo are described. Recent studies have shown that alpha-fluorination of a hepatotoxic metabolite of VPA (Delta(4)-VPA) resulted in a nonhepatotoxic derivative. We hypothesize that the decrease in hepatotoxicity may be related to a lack of formation of the intermediary acyl-CoA thioester. To determine the effect of alpha-fluoro substitution on acyl-CoA formation, we synthesized F-VPA and compared it with VPA for its ability to form the acyl-CoA thioester derivative in vivo in rat liver. Thus, after dosing rats with VPA or F-VPA, animals were sacrificed (0.05-, 0.5-, 1-, 2-, and 5-h postadministration) for the analysis of liver tissue. High-performance liquid chromatography (HPLC) and electrospray ionization/tandem mass spectrometry analysis of liver extracts from VPA-dosed rats showed the presence of VPA-CoA that was maximal after 0.5 h (185 nmol/g of liver) and was still measurable 5-h postadministration (90 nmol/g of liver). In agreement with our hypothesis, F-VPA did not form the corresponding acyl-CoA derivative as determined by the absence of F-VPA-CoA upon HPLC analysis of liver extracts from F-VPA-dosed rats. Further examination of liver tissue for the presence of free acids revealed that the differences in acyl-CoA formation cannot be explained by differences in VPA and F-VPA free acid concentrations. From these observations and related studies showing the lack of toxicity due to alpha-fluoro substitution, we propose that metabolism of VPA by acyl-CoA formation may mediate the hepatotoxicity of the drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app