JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys.

BACKGROUND: Allergic respiratory diseases are characterized by large numbers of eosinophils and their reactive products in airways and blood; these are believed to be involved in progressive airway damage and remodeling. IL-5 is the principal cytokine for eosinophil maturation, differentiation, and survival. Mepolizumab (SB-240563), a humanized monoclonal antibody (mAb) specific for human IL-5, is currently in clinical trials for treatment of asthma.

OBJECTIVE: The purpose of this study was to characterize the pharmacologic activity and long-term safety profile of an anti--human IL-5 mAb to support clinical trials in asthmatic patients.

METHODS: Naive and Ascaris suum -sensitive cynomolgus monkeys received various dose levels of mepolizumab and were monitored for acute and chronic pharmacologic and toxic responses.

RESULTS: To support preclinical safety assessment, cynomolgus monkey IL-5 was cloned, expressed, and characterized. Although monkey IL-5 differs from human IL-5 by 2 amino acids (Ala27Gly and Asn40His), mepolizumab has comparable inhibitory activity against both monkey IL-5 and human IL-5. In A suum--sensitive monkeys, single doses of mepolizumab significantly reduced blood eosinophilia, eosinophil migration into lung airways, and levels of RANTES and IL-6 in lungs for 6 weeks. However, mepolizumab did not affect acute bronchoconstrictive responses to inhaled A suum. In an IL-2--induced eosinophilia model (up to 50% blood eosinophilia), 0.5 mg/kg mepolizumab blocked eosinophilia by >80%. Single-dose and chronic (6 monthly doses) intravenous and subcutaneous toxicity studies in naive monkeys found no target organ toxicity or immunotoxicity up to 300 mg/kg. Monkeys did not generate anti-human IgG antibodies. Monthly mepolizumab doses greater than 5 mg/kg caused an 80% to 100% decrease in blood and bronchoalveolar lavage eosinophils lasting 2 months after dosing, and there was no effect on eosinophil precursors in bone marrow after 6 months of treatment. Eosinophil decreases correlated with mepolizumab plasma concentrations (half-life = 13 days).

CONCLUSION: These studies demonstrate that chronic antagonism of IL-5 by mepolizumab in monkeys is safe and has the potential, through long-term reductions in circulating and tissue-resident eosinophils, to be beneficial therapy for chronic inflammatory respiratory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app