Modified windmill porphyrin arrays: coupled light-harvesting and charge separattion, conformational relaxation in the S1 state, and S2-S2 energy transfer

A Nakano, A Osuka, T Yamazaki, Y Nishimura, S Akimoto, I Yamazaki, A Itaya, M Murakami, H Miyasaka
Chemistry: a European Journal 2001 July 16, 7 (14): 3134-51
The architecture of windmill hexameric zinc(II) -porphyrin array 1 is attractive as a light-harvesting functional unit in view of its three-dimensionally extended geometry that is favorable for a large cross-section of incident light as well as for a suitable energy gradient from the peripheral porphyrins to the meso-meso-linked diporphyrin core. Three core-modified windmill porphyrin arrays 2-4 were prepared for the purpose of enhancing the intramolecular energy-transfer rate and coupling these arrays with a charge-separation functional unit. Bisphenylethynylation at the meso and meso' positions of the diporphyrin core indeed resulted in a remarkable enhancement in the intramolecular S1-S1 energy transfer in 2 with tau=2 approximately 3 ps, as revealed by femtosecond time-resolved transient absorption spectroscopy. The fluorescence lifetime of the S2 state of the peripheral porphyrin energy donor determined by the fluorescence up-conversion method was 68 fs, and thus considerably shorter than that of the reference monomer (150 fs), suggesting the presence of the intramolecular energy-transfer channel in the S2 state manifold. Such a rapid energy transfer can be understood in terms of large Coulombic interactions associated with the strong Soret transitions of the donor and acceptor. Picosecond time-resolved fluorescence spectra and transient absorption spectra revealed conformational relaxation of the S1 state of the diporphyrin core with tau = 25 ps. Upon photoexcitation of models 3 and 4, which bear a naphthalenetetracarboxylic diimide or a meso-nitrated free-base porphyrin attached to the modified diporphyrin core as an electron acceptor, a series of photochemical processes proceeded, such as the collection of the excitation energy at the diporphyrin core, the electron transfer from the S1 state of the diporphyrin to the electron acceptor, and the electron transfer from the peripheral porphyrins to the diporphyrin cation radical, which are coupled to provide a fully charge-separated state such as that in the natural photosynthetic reaction center. The overall quantum yield for the full charge separation is better in 4 than in 3 owing to the slower charge recombination associated with smaller reorganization energy of the porphyrin acceptor.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"