COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Direct isolation of committed neuronal progenitor cells from transgenic mice coexpressing spectrally distinct fluorescent proteins regulated by stage-specific neural promoters.

Many tissues arise from pluripotent stem cells through cell-type specification and maturation. In the bone marrow, primitive stem cells generate all the different types of blood cells via the sequential differentiation of increasingly committed progenitor cells. Cell-surface markers that clearly distinguish stem cells, restricted progenitors, and differentiated progeny have enabled researchers to isolate these cells and to study the regulatory mechanisms of hematopoiesis. Neuronal differentiation appears to involve similar mechanisms. However, neural progenitor cells that are restricted to a neuronal fate have not been characterized in vivo, because specific cell-surface markers are not available. We have developed an alternative strategy to identify and isolate neuronal progenitor cells based on dual-color fluorescent proteins. To identify and isolate directly progenitor cells from brain tissue without the need for either transfection or intervening cell culture, we established lines of transgenic mice bearing fluorescent transgenes regulated by neural promoters. One set of transgenic lines expressed enhanced yellow fluorescent protein (EYFP) in neuronal progenitor cells and neurons under the control of the Talpha1 alpha-tubulin promoter. Another line expressed enhanced green fluorescent protein (EGFP) in immature neural cells under the control of the enhancer/promoter elements of the nestin gene. By crossing these lines we obtained mice expressing both transgenes. To isolate neuronal progenitor cells directly from the developing brain, we used flow cytometry, selecting cells that expressed EGFP and EYFP simultaneously. We expect this strategy to provide valuable material with which to study the mechanisms of neurogenesis and to develop cell-based therapies for neurological disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app