JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Real-time gait event detection for paraplegic FES walking.

A real-time method for the detection of gait events that occur during the electrically stimulated locomotion of paraplegic subjects is described. It consists of a two-level algorithm for the processing of sensor signals and the determination of gait event times. Sensor signals and information about the progression of the stimulator though its pre-specified stimulation "pattern" are processed by a machine intelligence (fuzzy logic) algorithm to determine an initial estimate of the patient's current phase of gait. This is then reviewed and modified by a second algorithm that removes spurious gait estimates, and determines gait event times. These gait event times are known to the system within approximately one-half of a gait cycle. The resulting gait event detection system was successfully evaluated on three subjects. Detection accuracy is not adversely affected by day-to-day gait variability. This work resolved technical and practical issues that previously limited the real time application of these methods. In particular, cosmetically acceptable insole force transducers were used. This gait event detector is designed for use in a real time controller for the automatic adjustment of the intensity and timing of stimulation while the subject is walking using functional electrical stimulation (FES).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app