JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter.

Cancer Research 2001 August 2
Because the apoptotic pathway is often disrupted in tumor cells, its genetic restoration is a very attractive approach for the treatment of tumors. To treat malignant gliomas with this approach, it would be preferred to restrict induction of apoptosis to tumor cells by establishing a tumor-specific expression system. Telomerase is an attractive target because the vast majority of malignant gliomas have telomerase activity whereas normal brain cells do not. Activation of telomerase is tightly regulated at the transcriptional level of the telomerase catalytic subunit [human telomerase reverse transcriptase, (hTERT)]. Therefore, we hypothesized that using a hTERT promoter-driven vector system, an apoptosis-inducible gene may be preferentially restricted to telomerase- or hTERT-positive tumor cells. In this study, we constructed an expression vector consisting of the constitutively active caspase-6 (rev-caspase-6) under the hTERT promoter (hTERT/rev-caspase-6) and then investigated its antitumor effect on malignant glioma cells. The rationale for using the rev-caspase-6 gene is because it induces apoptosis independent of the initiator caspases. We demonstrated that the hTERT/rev-caspase-6 construct induced apoptosis in hTERT-positive malignant glioma cells, but not in hTERT-negative astrocytes, fibroblasts, and alternative lengthening of telomeres cells. In addition, the growth of s.c. tumors in nude mice was significantly suppressed by the treatment with hTERT/rev-caspase-6 construct. The present results strongly suggest that the telomerase-specific transfer of the rev-caspase-6 gene under the hTERT promoter is a novel targeting approach for the treatment of malignant gliomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app