JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts.

Osteoblast-osteoclast coordination is critical in the maintenance of skeletal integrity. The modulation of osteoclastogenesis by immature cells of the osteoblastic lineage is mediated through receptor activator of NF kappa B (RANK), its ligand RANKL, and osteoprotegerin (OPG), a natural decoy receptor for RANKL. Here, the expression of OPG and RANKL in primary mouse osteoblastic cultures was investigated to determine whether the osteoclastogenic stimulus depended on the stage of osteoblastic differentiation and the presence of the calciotrophic hormone 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)). OPG mRNA expression was increased in osteoblastic cultures after the onset of mineralisation relative to less mature cultures, but did not alter in response to 1,25-(OH)(2)D(3) treatment. In contrast, basal RANK L mRNA expression did not change during differentiation but was significantly enhanced by 1,25-(OH)(2)D(3) treatment at all times. The stimulatory effects of 1,25-(OH)(2)D(3) on RANKL were lessened in more mature cultures, however. The RANKL/OPG ratio, an index of osteoclastogenic stimulus, was therefore increased by 1,25-(OH)(2)D(3) treatment at all stages of osteoblastic differentiation, but to a lesser degree in cultures after the onset of mineralisation. Thus the 1,25-(OH)(2)D(3)-driven increase in osteoclastogenic potential of immature osteoblasts appears to be mediated by increased RANKL mRNA expression, with mature osteoblasts having relatively decreased osteoclastogenic activity due to increased OPG mRNA expression. These findings suggest a possible mechanism for the recently proposed negative regulatory role of mature osteoblasts on osteoclastogenesis and indicate that the relative proportions of immature and mature osteoblasts in the local microenvironment may control the degree of resorption at each specific bone site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app