JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modeling and analysis of the dynamic behavior of mechanisms that result in the development of inner radial humps in the concentration of a single adsorbate in the adsorbed phase of porous adsorbent particles observed in confocal scanning laser microscopy experiments: diffusional mass transfer and adsorption in the presence of an electrical double layer.

A theoretical model for adsorption of a single charged adsorbate that accounts for the presence of an electrical double layer in the pores of adsorbent particles is constructed and solved. The dynamic behavior of the mechanisms of the model can result in the development of inner radial humps (concentration rings) in the concentration of a single charged analyte (adsorbate) in the adsorbed phase of porous adsorbent particles. The results of the present work demonstrate the implication of the concept regarding the effect of the presence of an electrical double layer in the pores of adsorbent particles and the induced interactions between the electrostatic potential distribution and the mechanisms of mass transport of the species by diffusion, electrophoretic migration, and adsorption. Furthermore, the mechanisms of the model could explain qualitatively the development of the concentration ring (hump) observed in confocal scanning laser microscopy experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app