JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The renal thiazide-sensitive Na-Cl cotransporter as mediator of the aldosterone-escape phenomenon.

The kidneys "escape" from the Na-retaining effects of aldosterone when circulating levels of aldosterone are inappropriately elevated in the setting of normal or expanded extracellular fluid volume, e.g., in primary aldosteronism. Using a targeted proteomics approach, we screened renal protein extracts with rabbit polyclonal antibodies directed to each of the major Na transporters expressed along the nephron to determine whether escape from aldosterone-mediated Na retention is associated with decreased abundance of one or more of renal Na transporters. The analysis revealed that the renal abundance of the thiazide-sensitive Na-Cl cotransporter (NCC) was profoundly and selectively decreased. None of the other apical solute-coupled Na transporters displayed decreases in abundance, nor were the total abundances of the three ENaC subunits significantly altered. Immunocytochemistry showed a strong decrease in NCC labeling in distal convoluted tubules of aldosterone-escape rats with no change in the cellular distribution of NCC. Ribonuclease protection assays (RPAs) revealed that the decrease in NCC protein abundance was not associated with altered NCC mRNA abundance. Thus, the thiazide-sensitive Na-Cl cotransporter of the distal convoluted tubule appears to be the chief molecular target for regulatory processes responsible for mineralocorticoid escape, decreasing in abundance via a posttranscriptional mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app