JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Attenuation of compensatory right ventricular hypertrophy and heart failure following monocrotaline-induced pulmonary vascular injury by the Na+-H+ exchange inhibitor cariporide.

Pulmonary hypertension results in compensatory right ventricular (RV) hypertrophy. We studied the role of the Na+-H+ exchange (NHE) in the latter process by determining the effect of the NHE-1 inhibitor cariporide after monocrotaline-induced pulmonary artery injury. Sprague-Dawley rats received a control or cariporide diet for 7 days, at which time they were administered either monocrotaline (60 mg/kg) or its vehicle. Twenty-one days later, monocrotaline control, but not cariporide-fed animals, demonstrated increased RV weights and cell size of 65 and 52%, respectively. Monocrotaline alone significantly increased RV systolic pressure and end diastolic pressure by 70 and 94%, respectively, whereas corresponding values with cariporide were significantly reduced to 33 and 42%. Central venous pressure increased by 414% in control animals, which was significantly reduced by cariporide. Monocrotaline treatment produced a decrease in cardiac output of 28 and 8% in the absence or presence of cariporide (P < 0.05 between groups), respectively. Although body weights were significantly lower in both monocrotaline-treated groups compared with vehicle treatment, with cariporide the net gain in body weight was twice that seen in the monocrotaline-treated animals without cariporide. Monocrotaline also increased RV NHE-1 and atrial natriuretic peptide mRNA expression, which was abrogated by cariporide. Monocrotaline-induced myocardial necrosis, fibrosis, and mononuclear infiltration was completely prevented by cariporide. Cariporide had no effect on monocrotaline-induced pulmonary intimal wall thickening. Our results demonstrate that cariporide directly attenuates myocardial dysfunction after monocrotaline administration independent of pulmonary vascular effects. NHE-1 inhibition may represent an effective adjunctive therapy that selectively targets myocardial hypertrophic responses in pulmonary vascular injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app