Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tsix-mediated repression of Xist accumulation is not sufficient for normal random X inactivation.

During the X inactivation process, one X chromosome in each female embryonic cell is chosen at random to become coated by Xist RNA and silenced. Tsix, a transcript anti-sense to Xist, participates in the choice of the inactive X and in Xist regulation through as yet unknown mechanisms. Undifferentiated female ES cells, which have two active Xs, recapitulate random X inactivation when induced to differentiate. A 65 kb deletion targeted to one of the two Xs in a female ES cell line, and including both the end of the Xist gene and the site of initiation of Tsix, resulted in the exclusive inactivation of the deleted X in differentiated ES cells. We have re-examined the phenotype of the 65 kb deletion and targeted Tsix and the terminal exons of Xist back to the deleted locus using a cre/loxP site-specific re-insertion strategy. We show that prior to inactivation the deleted X is associated in undifferentiated ES cells with both increased Xist expression and diffusion of the Xist transcript away from its site of synthesis. Restoration of Tsix repressed the steady-state level of Xist expression and restricted Xist RNA to its transcription site. At the onset of inactivation in differentiated ES cells, restoration of Tsix failed to restore random X-inactivation, even though the levels of Xist RNA accumulation in cis were markedly reduced. These results identify for the first time a dual function for Tsix as both a repressor of the steady-state level of Xist expression and as a regulator of the distribution of Xist RNA within the nucleus. They also establish that random inactivation requires mechanisms additional to the in cis repression of XIST:

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app