COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation.

When tobacco is provided with a high nitrate supply, only a small amount of the nitrate taken up by the roots is immediately assimilated inside the roots, while the majority is transported to the leaves where it is reduced to ammonium. To elucidate the importance of root nitrate assimilation, tobacco plants have been engineered that showed no detectable nitrate reductase activity in the roots. These plants expressed the nitrate reductase structural gene nia2 under control of the leaf-specific potato promoter ST-LS1 in the nitrate reductase-mutant Nia30 of Nicotiana tabacum. Homozygous T2-transformants grown in sand or hydroponics with 5.1 mM nitrate had approximately 55-70% of wild-type nitrate reductase acivity in leaves, but lacked nitrate reductase acivity in roots. These plants showed a retarded growth as compared with wild-type plants. The activation state of nitrate reductase was unchanged; however, diurnal variation of nitrate reductase acivity was not as pronounced as in wild-type plants. The transformants had higher levels of nitrate in the leaves and reduced amounts of glutamine both in leaves and roots, while roots showed higher levels of hexoses (3-fold) and sucrose (10-fold). It may be concluded that the loss of nitrate reductase acivity in the roots changes the allocation of reduced nitrogen compounds and sugars in the plant. These plants will be a useful tool for laboratories studying nitrate assimilation and its interactions with carbon metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app