Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reduction of glomerular hyperfiltration by dopamine D(2)-like receptor blockade in experimental diabetes mellitus.

BACKGROUND: Dopamine D(2)-like receptors are involved in the physiological response of renal haemodynamics to amino-acid infusion. The present study was performed to investigate whether domperidone, a D(2)-like receptor antagonist, modulates the pathological hyperfiltration in experimental diabetes mellitus.

METHODS: Renal function was studied in anaesthetized rats 2 weeks after induction of moderate diabetes mellitus by streptozotocin, and in non-diabetic controls. Rats in both groups continuously received domperidone or vehicle via drinking water. Following infusion of Ringer's saline for measurement of baseline values, an i.v. amino-acid load was applied to investigate the renal functional reserve.

RESULTS: In vehicle-treated diabetic rats baseline glomerular filtration rate and renal plasma flow were significantly higher compared with controls (1.10+/- 0.04 vs. 0.83+/-0.02 (P<0.004) and 4.83+/-0.26 vs 3.32+/-0.24 ml/min/100 g body weight (bw) (P<0.001) respectively). Domperidone completely normalized glomerular filtration rate and renal plasma flow in diabetic rats to values observed in vehicle-treated controls (0.81+/-0.07 (P=0.740) and 3.35+/- 0.30 ml/min/100 g bw (P=0.889) respectively). In the clearance experiments, arterial blood pressure, urinary flow rate and sodium excretion did not significantly differ when comparing the four groups. However, in conscious rats, urinary flow rate and sodium excretion were significantly higher in diabetic rats compared with non-diabetic controls. In both non-diabetic groups, amino-acid infusion induced a significant glomerular hyperfiltration that was completely absent in diabetic rats, and restored by domperidone treatment. In conscious vehicle-treated diabetic rats urinary albumin excretion was enhanced (449.0+/-47.7 vs. 185.7+/- 18.1 microg/24 h in non-diabetic rats (P<0.001)) and significantly lowered in diabetic rats by domperidone treatment (109.8+/-15.4 microg/24 h (P<0.001)).

CONCLUSION: The data suggest that dopaminergic mechanisms are involved in the changes in renal haemodynamics during early experimental diabetes mellitus in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app