JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Involvement of inducible isoforms of COX and NOS in streptozotocin-pancreatic damage in the rat: interactions between nitridergic and prostanoid pathway.

Streptozotocin-induced pancreatic damage involves nitric oxide (NO) and prostaglandins (PGs) overproduction. In this work we aim to evaluate a putative relationship between the elevated NO levels and the altered prostanoid production in pancreatic tissue from streptozotocin-diabetic rats. Total NOS activity and nitrate/nitrite pancreatic levels in tissues from diabetic rats are decreased when the cyclooxygenase (COX) inhibitor indomethacin (INDO) is added to the incubating medium, while the addition of PGE(2)increases nitrate/nitrite production and NOS levels. INDO and PGE(2)selectively affect Ca(2+)-dependent NOS (iNOS) activity in diabetic tissues, and they have not been able to modify nitrate/nitrite levels, iNOS or Ca(2+)-dependent (cNOS) in control tissues. When the NOS inhibitor L-NMMA was present in the incubating medium, control pancreatic [(14)C]-Arachidonic Acid ([(14)C]-AA) conversion to 6-keto PGF(1 alpha)and to TXB(2)was lower, and PGF(2 alpha), PGE(2)and TXB(2)production from diabetic tissues diminished. The NO donors, spermine nonoate (SN) and SIN-1, enhanced TXB(2)levels in control tissues, while PGF(2 alpha), PGE(2)and TXB(2)levels from diabetic tissues were increased. PGE(2)production from control and diabetic tissues was assessed in the presence of the NO donor SN plus INDO or NS398, a specific PG synthase 2 inhibitor. When SN combined with INDO or NS398 was added, the increment of PGE(2)production was abolished by both inhibitors in equal amounts, indicating that the activating effect of nitric oxide is exerted on the inducible isoform of cyclooxygenase. In the diabetic rat, prostaglandins and NO seem to stimulate the generation of each other, suggesting a lack of regulatory mechanisms that control the levels of vasoactive substances in acute phase of beta-cell destruction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app