Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant.

Reactive oxygen species contribute to ischemic brain injury. This study examined whether the porphyrin catalytic antioxidant manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) reduces oxidative stress and improves outcome from experimental cerebral ischemia. Rats that were subjected to 90 min focal ischemia and 7 d recovery were given MnTE-2-PyP(5+) (or vehicle) intracerebroventricularly 60 min before ischemia, or 5 or 90 min or 6 or 12 hr after reperfusion. Biomarkers of brain oxidative stress were measured at 4 hr after postischemic treatment (5 min or 6 hr). MnTE-2-PyP(5+), given 60 min before ischemia, improved neurologic scores and reduced total infarct size by 70%. MnTE-2-PyP(5+), given 5 or 90 min after reperfusion, reduced infarct size by 70-77% and had no effect on temperature. MnTE-2-PyP(5+) treatment 6 hr after ischemia reduced total infarct volume by 54% (vehicle, 131 +/- 60 mm(3); MnTE-2-PyP(5+), 300 ng, 60 +/- 68 mm(3)). Protection was observed in both cortex and caudoputamen, and neurologic scores were improved. No MnTE-2-PyP(5+) effect was observed if it was given 12 hr after ischemia. MnTE-2-PyP(5+) prevented mitochondrial aconitase inactivation and reduced 8-hydroxy-2'-deoxyguanosine formation when it was given 5 min or 6 hr after ischemia. In mice, MnTE-2-PyP(5+) reduced infarct size and improved neurologic scores when it was given intravenously 5 min after ischemia. There was no effect of 150 or 300 ng of MnTE-2-PyP(5+) pretreatment on selective neuronal necrosis resulting from 10 min forebrain ischemia and 5 d recovery in rats. Administration of a metalloporphyrin catalytic antioxidant had marked neuroprotective effects against focal ischemic insults when it was given up to 6 hr after ischemia. This was associated with decreased postischemic superoxide-mediated oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app