COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Quantitative MR evaluation of intracranial epidermoid tumors by fast fluid-attenuated inversion recovery imaging and echo-planar diffusion-weighted imaging.

BACKGROUND AND PURPOSE: Quantification of MR can provide objective, accurate criteria for evaluation of a given MR sequence. We quantitatively compared conventional MR sequences with fast fluid-attenuated inversion recovery (fast-FLAIR) and echo-planar diffusion-weighted (DW) MR imaging in the examination of intracranial epidermoid tumors.

METHODS: Eight patients with surgically confirmed intracranial epidermoid tumors were examined with T1-weighted MR sequences, fast T2- and proton density-weighted dual-echo sequences, fast-FLAIR sequences, and DW echo-planar sequences. We measured the MR signal intensity and apparent diffusion coefficient (ADC) of epidermoid tumors, normal brain tissue, and CSF and calculated the tumor-to-brain and tumor-to-CSF contrast ratios and contrast-to-noise ratios (CNR). Results were compared among the five MR methods.

RESULTS: On fast-FLAIR imaging, the mean signal intensity of epidermoid tumors was significantly higher than that of CSF but significantly lower than that of the brain; the contrast ratio and CNR of tumor-to-CSF were 4.71 and 9.17, respectively, significantly greater than the values with conventional MR imaging. On echo-planar DW imaging, epidermoid tumors showed a remarkably hyperintense signal relative to those of the brain and CSF; the mean contrast ratio and CNR of tumor-to-CSF were 13.25 and 19.34, respectively, significantly greater than those on fast-FLAIR or conventional MR imaging. The mean ADC of epidermoid tumors was 1.197 x 10(-3) mm(2)/s, significantly lower than that of CSF but higher than that of brain tissues.

CONCLUSION: Fast-FLAIR imaging is superior to conventional MR imaging in depicting intracranial epidermoid tumors. Echo-planar DW imaging provides the best lesion conspicuity among the five MR methods. The hyperintensity of epidermoid tumors on echo-planar DW imaging is not caused by the diffusion restriction but by the T2 shine-through effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app