Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A role of N-cadherin in neuronal differentiation of embryonic carcinoma P19 cells.

N-cadherin is one of the important molecules for cell to cell interaction in the development of the central nervous system (CNS). In this report, we have shown that N-cadherin mRNA and protein were increased rapidly in retinoic acid (RA)-induced neuronal differentiation of embryonic carcinoma P19 cells. To explore possible roles for N-cadherin during this process, N-cadherin-overexpressing P19 cell lines were established. These transfected cells could differentiate into neurofilament-expressing neurons in the absence of RA. RT-PCR revealed that the expression patterns of development-related genes, such as Oct-3/4, nestin, Notch-1, and Mash-1 were similar between the transfected P19 cells and the RA-induced wild-type P19 cells during their neuronal differentiation. On the contrary, the Wnt-1 gene was up-regulated in the N-cadherin-overexpressing P19 cells, but could not be detected in the wild-type P19 cells. These results suggest N-cadherin may play a role in neuronal differentiation of P19 cells, possibly through the Wnt-1 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app