JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality.

Seeds of bean (Phaseolus vulgaris cv. Vernel) were collected throughout their development on the plant and dried at 15 degrees C and 75% relative humidity to a final moisture content of about 16% (fresh weight basis) to determine whether the onset of tolerance to this drying condition was related to changes in soluble sugars or the activities of the main antioxidant enzymes, namely superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR). Measurements of soluble sugars and enzyme activities were made after drying the seeds, and drying tolerance was evaluated by the ability of dried seeds to germinate and to produce normal seedlings. Seeds became tolerant to drying at 45 d after anthesis, a time marking physiological maturity. At physiological maturity, the moisture content of seeds was about 50-55% (fresh weight basis) and seed dry matter reached about 190 mg per seed. Seed vigour, evaluated by controlled deterioration and conductivity measurements, continued to increase after seed mass maturity, but decreased when seeds remained thereafter for more than 7 d on the plant. Acquisition of drying tolerance was coincident with an accumulation of raffinose and stachyose. Dried-tolerant seeds were also characterized by a high amount of sucrose, the most abundant sugar, and by a low content of monosaccharides. The (raffinose+stachyose)/sucrose ratio increased during seed filling, reaching a value close to 1 when all the seeds became tolerant to drying, and maintaining this proportion during the final stages of maturation. Acquisition of drying tolerance was also related to a reorientation of the enzymatic antioxidant defence system. Drying-tolerant dried seeds displayed high CAT and GR activities and low SOD and APX activities, while the opposite condition was observed in immature dried seeds. The shift in antioxidant enzymes corresponded to the beginning of the maturation-drying phase. These results suggest that oligosaccharide metabolism and enzymatic antioxidant defences may be involved in acquisition of drying tolerance during bean seed development, but are not related to seed vigour.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app