Add like
Add dislike
Add to saved papers

Increased matrix metalloproteinase 9 activity and mRNA expression in lung ischemia-reperfusion injury.

OBJECTIVES: In lung ischemia-reperfusion injury, neutrophil migration from the vasculature to the interstitial spaces plays a major role in tissue injury. Degradation of the basement membrane, which is composed of extracellular matrix (ECM) molecules, is necessary for neutrophil migration. Matrix metalloproteinases (MMPs) might play a role in ECM degradation in lung ischemia-reperfusion injury. We evaluated the changes in the activity of MMP-2 and MMP-9, and tissue inhibitor of metalloproteinase 1 (TIMP-1) gene expressions using rat lung transplantation models.

METHODS: We divided animals into 4 groups. Groups I and II served as control groups with intact lungs (Group I) and 24-hour cold-preserved lungs (Group II). Groups III and IV received lung grafts after 24-hour cold preservation. The recipient animals were sacrificed 1 hour (Group III) or 24 hours (Group IV) after transplantation. We evaluated lung injury histologically. We assessed MMP activity using zymography. We assessed MMP-2, MMP-9, and TIMP-1 gene expression using biplex reverse transcriptase-polymerase chain reaction method.

RESULTS: In Groups III and IV, we noted severe ischemia-reperfusion injury. We noted no significant difference in enzyme activity and gene expression of MMP-2 between Groups I and IV. The MMP-9 activity and gene expression were low during ischemia and increased on reperfusion. TIMP-1 gene expression was low during ischemia and at the early phase of reperfusion, and showed a dramatic increase at the late phase of reperfusion.

CONCLUSIONS: Matrix metalloproteinase 9, but not MMP-2, may play an important role in ischemia-reperfusion injury. TIMP-1 increases at the late phase of reperfusion and may compensate for the activity of MMP-9.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app