JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene.

Genomics 2001 March 16
Hereditary systemic amyloidosis may be caused by mutations in a number of plasma proteins including transthyretin, apolipoprotein AI, fibrinogen Aalpha-chain, lysozyme, and gelsolin. Each type of amyloidosis is inherited as an autosomal dominant disease and is associated with a structurally altered protein that aggregates to form amyloid fibrils. Here we report that the amyloid protein in a family with previously uncharacterized hereditary renal amyloidosis is apolipoprotein AII (apoAII) with a 21-residue peptide extension on the carboxyl terminus. Sequence analysis of the apoAII gene of affected individuals showed heterozygosity for a single base substitution in the apoAII stop codon. The mutation results in extension of translation to the next in-frame stop codon 60 nucleotides downstream and is predicted to give a 21-residue C-terminal extension of the apoAII protein identical to that found in the amyloid. This mutation produces a novel BstNI restriction site that can be used to identify individuals with this gene by restriction fragment length polymorphism analysis. This is the first report of apoAII amyloid in humans and the first mutation identified in apoAII protein. Amyloid fibril formation from apoAII suggests that this lipoprotein, which is predicted to have an amphipathic helical structure, must undergo a transition to a beta-pleated sheet by a mechanism shared by other lipoproteins that form amyloid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app