Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of corticotropin-releasing hormone type 1 receptor in paraventricular nucleus after acute stress.

We have previously proposed the existence of ultrashort loop-positive feedback regulation of corticotropin-releasing hormone (CRH) in the hypothalamus. To gain a better understanding of this effect, we performed double-label in situ hybridization to identify the neurons in the paraventricular nucleus (PVN) that express CRH type 1 receptor (CRH-R1) following stress. We also conducted immunohistochemistry to determine whether CRH-R1 mRNA was translated to CRH-R1 protein in the PVN. Thirty-minute restraint stress given to male Wistar rats increased c-fos mRNA expression primarily in the CRH-producing neurons of the parvocellular PVN. Small numbers of vasopressin and oxytoxin-producing cells were also labeled by c-fos probes. Approximately 70% of CRH-R1 positive neurons exhibited CRH mRNA 2 h after the beginning of stress, while only a small percentage of the vasopressin and oxytocin-producing cells coexpressed CRH-R1 mRNA. CRH-R1 immunoreactivity, which was detected in the perikarya and fibers of PVN neurons, appeared to increase in response to stress, though this was not statistically significant. Pretreatment with a selective CRH-R1 antagonist, CP-154,526, significantly attenuated stress-induced corticotropin (ACTH) secretion as well as c-fos mRNA expression in the PVN. These results demonstrate that acute stress increases neuronal activation and CRH-R1 mRNA expression primarily in CRH-producing neurons of the parvocellular PVN, that CRH-R1 message is translated to CRH-R1 protein, and that PVN neurons are activated at least in part through CRH-R1 under acute stress. The data further support the possibility of feedback regulation of CRH itself in CRH-producing neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app