JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Regulation of gonadotropin subunit genes in tilapia.

A steroidogenic tilapia gonadotropin (taGtH=LH) was purified from pituitaries of hybrid tilapia (Oreochromis niloticus x O. aureus) and a homologous RIA was established. This RIA enabled the study of the endocrine regulation of GtH release, the transduction pathways involved in its secretion and its profile during the spawning cycle. Discrepancies between steroid and taGtH peaks during the cycle led to the conclusion that an additional gonadotropin similar to salmonid FSH operates early in the cycle. In order to identify this hormone and to study the endocrine control of synthesis of all gonadotropin (GtH) subunits, a molecular approach was taken. The cDNA sequences and the entire gene sequences encoding the FSHbeta and LHbeta subunits, as well as an incomplete sequence of the glycoprotein hormone alpha subunit (GPalpha), were cloned. Salmon gonadotropin-releasing hormone (sGnRH) elevated mRNA steady-state levels of all three GtH subunits in cultured pituitary cells. Pituitary adenylate cyclase-activating polypeptide (PACAP) and neuropeptide Y (NPY) also stimulated the expression of these subunits and potentiated the effect of GnRH, except that NPY did not affect FSHbeta. The GnRH and NPY effects were found to be mediated mainly through protein kinase C (PKC), while protein kinase A (PKA) cascade was involved to a lesser extent. Mitogen-activated protein kinase (MAPK) cascade takes part in mediating GnRH effects, possibly via PKC. Testosterone (T) and estradiol (E2), but not 11-ketotestosterone (KT), are able to elevate GPalpha and LHbeta mRNAs in pituitary cells of early maturing or regressing males. Low levels of T exposure are associated with elevated FSHbeta mRNA in cells of mature fish, while higher levels suppress it, but elevate LHbeta mRNA. In vivo observations also showed the association of low T levels with increased FSHbeta mRNA and high T levels with elevated LHbeta mRNA. In accordance with these findings, analysis of LHbeta and FSHbeta 5' gene-flanking regions revealed on both gene promoters a GtH-specific element (GSE), half site estrogen response elements (ERE), cAMP response element (CRE) and AP1. In vitro experiments showed that recombinant human activin-A leads to higher levels of GPalpha, FSHbeta and LHbeta mRNAs in pituitary cell culture. Porcine inhibin marginally decreased the mRNA levels of GPalpha and FSHbeta, but at a low level (1 ng/ml) it stimulated that of LHbeta. These results shed some light on certain hypothalamic and gonadal hormones regulating the expression of GtH subunit genes in tilapia. In addition, they provide evidence for their differential regulation, and insight into their mode of action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app