Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A rapid PCR method for the detection of slime-producing strains of Staphylococcus epidermidis and S. aureus in periprosthesis infections.

In periprosthesis tissues, Staphylococcus epidermidis produces extracellular polysaccharide slime. Recently it has been shown that S. aureus also produces slime and that both S. epidermidis and S. aureus contain the ica operon responsible for slime production. In the operon, icaA encodes for N-acetylglutaminyltransferase, the enzyme for polysaccharide synthesis. However, co-expression of icaA and icaD is required for full slime synthesis. The slime-producing strains of both S. epidermidis and S. aureus are more virulent and are responsible for severe postsurgical or periprosthesis infections. The authors describe a simple, rapid, and reliable polymerase chain reaction method to detect icaA and icaD. The method was applied to the detection of ica genes on two reference strains, 15 strains each of S. epidermidis and S. aureus from periprosthesis infections and 10 strains from the skin and mucosa of healthy volunteers. icaA and icaD were detectable only in slime-producing strains (tested for slime production on Congo Red agar), and never in nonslime-producing ones. This method is a straightforward way of detecting the slime-producing ability by S. epidermidis and S. aureus. In clinical specimens this polymerase chain reaction method enables rapid diagnosis of virulent slime-producing strains with respect to the traditional culture method on Congo Red agar, which requires much more time. Rapid identification of the virulent properties of the bacterial strain responsible for a staphylococcal infection is crucial for deciding treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app