Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression.

Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator composed of HIF-1alpha and HIF-1beta subunits. Several dozen HIF-1 targets are known, including the gene encoding vascular endothelial growth factor (VEGF). Under hypoxic conditions, HIF-1alpha expression increases as a result of decreased ubiquitination and degradation. The tumor suppressors VHL (von Hippel-Lindau protein) and p53 target HIF-1alpha for ubiquitination such that their inactivation in tumor cells increases the half-life of HIF-1alpha. Increased phosphatidylinositol 3-kinase (PI3K) and AKT or decreased PTEN activity in prostate cancer cells also increases HIF-1alpha expression by an undefined mechanism. In breast cancer, increased activity of the HER2 (also known as neu) receptor tyrosine kinase is associated with increased tumor grade, chemotherapy resistance, and decreased patient survival. HER2 has also been implicated as an inducer of VEGF expression. Here we demonstrate that HER2 signaling induced by overexpression in mouse 3T3 cells or heregulin stimulation of human MCF-7 breast cancer cells results in increased HIF-1alpha protein and VEGF mRNA expression that is dependent upon activity of PI3K, AKT (also known as protein kinase B), and the downstream kinase FRAP (FKBP-rapamycin-associated protein). In contrast to other inducers of HIF-1 expression, heregulin stimulation does not affect the half-life of HIF-1alpha but instead stimulates HIF-1alpha synthesis in a rapamycin-dependent manner. The 5'-untranslated region of HIF-1alpha mRNA directs heregulin-inducible expression of a heterologous protein. These data provide a molecular basis for VEGF induction and tumor angiogenesis by heregulin-HER2 signaling and establish a novel mechanism for the regulation of HIF-1alpha expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app