Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

TNF-alpha controls intracellular mycobacterial growth by both inducible nitric oxide synthase-dependent and inducible nitric oxide synthase-independent pathways.

The role of TNF-alpha in the control of mycobacterial growth in murine macrophages was studied in vitro. Infection of macrophages from TNF-alpha gene disrupted (TNF-knockout (KO)) mice with recombinant Mycobacterium bovis bacillus Calmette Guérin (BCG) expressing the vector only (BCG-vector) resulted in logarithmic growth of the intracellular bacilli. Infection with BCG-secreting murine TNF-alpha (BCG-TNF) led to bacillary killing. Killing of BCG-TNF was associated with rapid accumulation of inducible NO synthase (iNOS) protein and the production of nitrite. The uncontrolled growth of BCG-vector was associated with low iNOS expression but no nitrite production. Thus, iNOS expression appears to be TNF-alpha independent but iNOS generation of NO requires TNF-alpha. In cultures of TNF-KO macrophages infected with BCG-TNF, inhibition of iNOS by aminoguanidine (AMG) abolished the killing of the bacilli. However, the growth of the organisms was still inhibited, suggesting an iNOS-independent TNF-alpha-mediated growth inhibition. To confirm this, macrophages from iNOS-KO mice were infected with either BCG-vector or BCG-TNF. As expected, no nitrite was detected in the culture medium. TNF-alpha was detected only when the cells were infected with BCG-TNF. In the iNOS-KO macrophages, the growth of BCG was inhibited only in the BCG-TNF infection. These results suggest that in the absence of iNOS activity, TNF-alpha stimulates macrophages to control the growth of intracellular BCG. Thus, there appears to be both a TNF-alpha-dependent-iNOS-dependent killing pathway as well as a TNF-alpha-dependent-iNOS-independent growth inhibitory pathway for the control of intracellular mycobacteria in murine macrophages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app