Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Multiple sites of contact between the carboxyl-terminal binding domain of PTHrP-(1--36) analogs and the amino-terminal extracellular domain of the PTH/PTHrP receptor identified by photoaffinity cross-linking.

The carboxyl-terminal portions of parathyroid hormone (PTH)-(1--34) and PTH-related peptide (PTHrP)-(1-36) are critical for high affinity binding to the PTH/PTHrP receptor (P1R), but the mechanism of receptor interaction for this domain is largely unknown. To identify interaction sites between the carboxyl-terminal region of PTHrP-(1--36) and the P1R, we prepared analogs of [I(5),W(23),Y(36)]PTHrP-(1--36)-amide with individual p-benzoyl-l-phenylalanine (Bpa) substitutions at positions 22--35. When tested with LLC-PK(1) cells stably transfected with human P1R (hP1R), the apparent binding affinity and the EC(50) of agonist-stimulated cAMP accumulation for each analog was, with the exception of the Bpa(24)-substituted analog, similar to that of the parent compound. The radiolabeled Bpa(23)-, Bpa(27)-, Bpa(28)-, and Bpa(33)-substituted compounds affinity-labeled the hP1R sufficiently well to permit subsequent mapping of the cross-linked receptor region. Each of these peptides cross-linked to the amino-terminal extracellular domain of the P1R: [I(5),Bpa(23),Y(36)]PTHrP-(1-36)-amide cross-linked to the extreme end of this domain (residues 33-63); [I(5),W(23),Bpa(27),Y(36)]PTHrP-(1--36)-amide cross-linked to residues 96--102; [I(5),W(23),Bpa(28),Y(36)]PTHrP-(1--36)- amide cross-linked to residues 64--95; and [I(5),W(23), Bpa(33),Y(36)]PTHrP-(1--36)-amide cross-linked to residues 151-172. These data thus predict that residues 23, 27, 28, and 33 of native PTHrP are each near to different regions of the amino-terminal extracellular receptor domain of the P1R. This information helps define sites of proximity between several ligand residues and this large receptor domain, which so far has been largely excluded from models of the hormone-receptor complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app