Mechanism of posterior semicircular canal stimulation in patients with benign paroxysmal positional vertigo

V Honrubia, M House
Acta Oto-laryngologica 2001, 121 (2): 234-40
A quantitative study of the stimuli and vestibulo-ocular response associated with benign paroxysmal positional vertigo (BPPV) was made to test and further develop the canalithiasis theory of BPPV. The angular velocities of the head in the planes of the semicircular canals during the Dix-Hallpike test were measured in four healthy subjects using electromagnetic sensors to record the position of the head in a six degrees of freedom paradigm. Next, the nystagmus reactions in seven patients diagnosed with idiopathic BPPV were recorded with video-oculography. The characteristics of the vestibulo-ocular reflex (VOR) response were analyzed using three-dimensional vector techniques. The angular velocity of the head was primarily, but not exclusively, in the plane of the posterior semicircular canal (PSC) in question. Both the anterior and horizontal canals were also stimulated by a lesser degree. The duration of the motion stimulus in the PSC was < 1.3 s with peak angular velocities of 150 deg/s. The eye response in BPPV patients began 4 s after the test and had a duration of 15-20 s. Peak slow-component eye velocities of about 42 deg/s were reached 3-5 s after onset of nystagmus. The motion of the eye, as predicted by the cupulolithiasis theory, is disconjugated and has torsional, vertical, and horizontal components. In the eye ipsilateral to the tested ear it is primarily torsional (0.80, 0.54, 0.16) and in the contralateral eye it is mainly vertical (0.57, 0.73, 0.08). These results suggest that particles, initially resting on the floor of the cupula dome in the PSC, are perturbed by the Dix-Hallpike test and disperse freely into the endolymph where they are propelled by gravity into the canal lumen. This creates abnormal pressure on the cupula and the specific VOR activation of the ipsilateral superior oblique and the contralateral inferior rectus muscles, whose force vectors are indistinguishable from the measured eye motion vectors. The estimated pressure exerted on the crista is approximately 10(-2) dyn/cm2.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"