JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Branched chain amino acids activate messenger ribonucleic acid translation regulatory proteins in human skeletal muscle, and glucocorticoids blunt this action.

Branched chain amino acids (BCAA) are particularly effective anabolic agents. Recent in vitro studies suggest that amino acids, particularly leucine, activate a signaling pathway that enhances messenger ribonucleic acid translation and protein synthesis. The physiological relevance of these findings to normal human physiology is uncertain. We examined the effects of BCAA on the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (eIF4E-BP1) and ribosomal protein S6 kinase (p70(S6K)) in skeletal muscle of seven healthy volunteers. We simultaneously examined whether BCAA affect urinary nitrogen excretion and forearm skeletal muscle protein turnover and whether the catabolic action of glucocorticoids could be mediated in part by inhibition of the action of BCAA on the protein synthetic apparatus. BCAA infusion decreased urinary nitrogen excretion (P < 0.02), whole body phenylalanine flux (P < 0.02), plasma phenylalanine concentration (P < 0.001), and improved forearm phenylalanine balance (P = 0.03). BCAA also increased the phosphorylation of both eIF4E-BP1 (P < 0.02) and p70(S6K) (P < 0.03), consistent with an action to activate the protein synthetic apparatus. Dexamethasone increased plasma phenylalanine concentration (P < 0.001), prevented the BCAA-induced anabolic shift in forearm protein balance, and inhibited their action on the phosphorylation of p70(S6K). We conclude that in human skeletal muscle BCAA act directly as nutrient signals to activate messenger ribonucleic acid translation and potentiate protein synthesis. Glucocorticoids interfere with this action, and that may be part of the mechanism by which they promote net protein catabolism in muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app