Proteolytic cleavage of chromogranin A (CgA) by plasmin. Selective liberation of a specific bioactive CgA fragment that regulates catecholamine release

Q Jiang, L Taupenot, S K Mahata, M Mahata, D T O'Connor, L A Miles, R J Parmer
Journal of Biological Chemistry 2001 July 6, 276 (27): 25022-9
Chromogranin A (CgA), the major soluble protein in catecholamine storage vesicles, serves as a prohormone that is cleaved into bioactive peptides that inhibit catecholamine release, providing an autocrine, negative feedback mechanism for regulating catecholamine responses during stress. However, the proteases responsible for the processing of CgA and release of bioactive peptides have not been established. Recently, we found that chromaffin cells express components of the plasmin(ogen) system, including tissue plasminogen activator, which is targeted to catecholamine storage vesicles and released with CgA and catecholamines in response to sympathoadrenal stimulation, and high affinity cell surface receptors for plasminogen, to promote plasminogen activation at the cell surface. In the present study, we investigated processing of CgA by plasmin and sought to identify specific bioactive CgA peptides produced by plasmin proteolysis. Highly purified human CgA (hCgA) was produced by expression in Escherichia coli and purification using metal affinity chromatography. hCgA was digested with plasmin. Matrix-assisted laser desorption/ionization mass spectrometry identified a major peptide produced with a mass/charge ratio (m/z) of 1546, corresponding uniquely to hCgA-(360-373), the identity of which was confirmed by reverse phase high pressure liquid chromatography and amino-terminal microsequencing. hCgA-(360-373) was selectively liberated by plasmin from hCgA at early time points and was stable even after prolonged exposure to plasmin. The corresponding synthetic peptide markedly inhibited nicotine-induced catecholamine release from pheochromocytoma cells. These results identify plasmin as a protease, present in the local environment of the chromaffin cell, that selectively cleaves CgA to generate a bioactive fragment, hCgA-(360-373), that inhibits nicotinic-mediated catecholamine release. These results suggest that the plasminogen/plasmin system through its interaction with CgA may play a major role in catecholaminergic function and suggest a specific mechanism as well as a discrete CgA peptide through which this effect is mediated.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"